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The WIEN2k code: comments  

Walter Kohn: density functional theory  (DFT),     1965 

 J.C.Slater: augmented plane wave (APW) method,   1937 

O.K.Andersen: Linearized APW (LAPW),                  1975 

Wien2k code: developed during the last 35 years 

 In the year 2000  (2k)  the WIEN code (from Vienna) was called wien2k 

 One of the most accurate  DFT codes for solids  

 All electron, relativistic,  full-potential  method  

 Widely used in academia and industry  

 Applications:  

 solids: insulators , covalently bonded systems, metals 

 Surfaces:  catalysis 

 Electronic, magnetic, elastic , optical ,…properties  

 Many application in literature   

 See www.wien2k.at   

 

http://www.wien2k.at/
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Aspects at this workshop  

 Atomic structure   

 Periodic boundary condition (approximation)  

Quantum mechanical treatment 

 DFT  (functionals) and beyond   (GW, DMFT, RPA, BSE, …) 

How to solve the QM (basis set)  

 LAPW method and local orbitals as implemented in WIEN2k 

 Applications  

 Structure, surfaces, core-level spectra, NMR, hyperfine, Wannier,…  

 Software development  

 Accuracy, efficiency, system size, user-friendliness, commercial 

 Insight and understanding 

 Analysis to find trends, computer experiments (artificial cases) 

 Combination of expertise 

 Chemistry, physics, mathematics, computer science, application  



Four big challenges for theorists : 

 large scale applications to simulate “real” materials 

 at the atomic scale   

 A proper quantum mechanical treatment (accurate) 
 develop more accurate DFT functionals  

 beyond DFT (GW, DMFT, BSE, RPA…) 

 Efficiency (make calculations faster): 
 improve numerics, parallelization, algorithms (iterative 

diagonalization) 

 calculate “new” properties 

 for direct comparison with experiment  

 



The atomic structure  

 A crystal is represented by a unit cell   

 We assume periodic boundary condition (approximation)  

 The unit cell is repeated to infinity  (makes calculations feasible) 

 A real crystal is finite (with surfaces, impurities, defects …) 

 Nano materials differ from bulk  

 Symmetry helps (space group, Bloch theorem, …) 

 In theory 

 The atomic structure is an input and thus well defined.  

 Artificial structures can be studied too 

 In experiment 

 The atomic structure is not perfectly known  

 Single crystals, micro crystals, powder samples, nano   

 e.g. by X-ray:  averaged with uncertainties (defects, disorder)  



A few solid state concepts 

 Crystal structure 

 Unit cell (defined by 3 lattice vectors) leading to 7 crystal systems 

 Bravais lattice (14) 

 Atomic basis (Wyckoff position) 

 Symmetries (rotations, inversion, mirror planes, glide plane, screw axis)  

 Space group (230) 

 Wigner-Seitz cell 

 Reciprocal lattice (Brillouin zone) 

 Electronic structure 

 Periodic boundary conditions 

 Bloch theorem (k-vector), Bloch function 

 Schrödinger equation (HF, DFT) 
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Unit cell: a volume in space that 

fills space entirely when translated 

by all lattice vectors. 

The obvious choice: 

a parallelepiped defined by a, b, c, 

three basis vectors with 

the best a, b, c are as orthogonal 

as possible 

the cell is as symmetric as 

possible (14 types) 

A unit cell containing one lattice point is called  primitive cell. 

Unit cell 

Assuming an ideal infinite crystal we define a unit cell by  



Axis system 

 

 

primitive    

a = b = c   

a = b = g = 90° 

 

body centered          face centered 

P (cP) I (bcc) F (fcc) 

Crystal system: e.g. cubic 



3D lattice types: 

Triclinic 1 “no” symmetry 

Monoclinic (P, C) 2 Two right angles 

Orthorhombic (P, C, I, F) 4 Three right angles 

Tetragonal (P, I) 2 Three right angles + 4 fold rotation 

Cubic (P, I, F) 3 Three right angles + 4 fold + 3 fold 

Trigonal (Rhombohedral) 1 Three equal angles (≠ 90o)+ 3 fold  

Hexagonal 1 Two right and one 120o angle + 6 fold 

 7 Crystal systems and 14 Bravais lattices 



Wigner-Seitz Cell 

Form connection to all neighbors and span a plane normal  
to the connecting line at half distance 



n=3         3x3x3 particle 
surface 

edge 

Fraction of atoms on surface (black) or edge (red) as function of particle size n 

Finite particle    with a length in nm   



The quantum mechanical treatment 

 The electronic structure requires a QM treatment  

 The main scheme is density functional theory (DFT)  

 It is a mean field approach and requires approximations  

 According to Hohenberg Kohn, it is sufficient to know the electron 
density of a system to determine its total energy. The many electron 
wave function (which depends on many variables) is not needed.       
In principle this is an enormous simplification, but in practice 
approximations must be made. 

 The direction of improving the QM treatment is summarized pictorially 
in Jabob’s ladder:  

 There are schemes which go beyond DFT: 

 GW method (for excitations or band gaps)  

 The Bethe Salpeter equation (BSE) for excitons (core hole - electron)  

 Dynamical mean field theory (DMFT) based on DFT (wien2wannier) 



Bloch-Theorem: 
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1-dimensioanl case: 
 

V(x) has lattice periodicity  (“translational invariance”):  
       V(x)=V(x+a)          
The electron density r(x) has also lattice periodicity, however,  
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periodic boundary conditions: 

 The wave function must be uniquely defined: after G 
translations it must be identical (G a: periodicity volume): 
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Bloch functions: 

Wave functions with Bloch form: 
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Phase factor               lattice periodic function 
Re [y(x)]

x

Replacing k  by  k+K, where K  is a reciprocal lattice vector, 
fulfills again the Bloch-condition.  
 k can be restricted to the first Brillouin zone . 
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Concepts when solving Schrödingers-equation in solids 

non relativistic 

semi-relativistic 

fully-relativistic 

(non-)selfconsistent 

“Muffin-tin” MT 

atomic sphere approximation (ASA) 

Full potential : FP 

pseudopotential (PP) 

Hartree-Fock (+correlations) 

Density functional theory (DFT) 

   Local density approximation  (LDA) 

   Generalized gradient approximation (GGA) 

   Beyond LDA: e.g. LDA+U 

Non-spinpolarized 

Spin polarized 

(with certain magnetic order) 

non periodic  

(cluster) 

periodic  

(unit cell) 

plane waves : PW 

augmented plane waves : APW 

atomic oribtals. e.g. Slater (STO), Gaussians (GTO),  

   LMTO, numerical basis 

Basis functions 

Treatment of  

  spin 

Representation 

of solid 

Form of 

potential 

exchange and correlation potential 

Relativistic treatment  

of the electrons 

Schrödinger – equation 
(Kohn-Sham equation) 
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DFT vs. MBT (many body theory)  



Coulomb potential: 

 nuclei 

 all electrons 

 including  

 self-interaction 
 

Quantum mechanics: 

 exchange 

 correlation 

 (partly) cancel    

 self-interaction 
 



Jacob‘s ladder: The grand challenge: 

  Find a functional which leads to “DFT heaven”:                

  predictive power with chemical accuracy 

  J. Perdew‘s „Jacob‘s ladder“ into DFT heaven:  

 

• DFT heaven 

 

• unoccupied orbitals (ACFDT-RPA) 

• occupied orbitals (hybrid-DFT) 

• meta-GGAs (kinetic energy density t) 

• GGA (r) 

• LDA (r) 

• Hartree 



Hohenberg-Kohn theorem:   (exact) 

The total energy of an interacting inhomogeneous electron gas in the 
presence of an external potential Vext(r ) is a functional of the density r 
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DFT Density Functional Theory 



Exchange and correlation 

 We divide the density of the N-1 electron system 
into the total density n(r) and an exchange-
correlation hole: 

 

Properties of the exchange-correlation hole: 

 Locality 

 Pauli principle 

 the hole contains ONE electron 

 The hole must be negative 

 

 The exchange hole affects electrons with the 
same spin and accounts for the Pauli principle 

 In contrast, the correlation-hole accounts for the 
Coulomb repulsion of electrons with the opposite 
spin. It is short range and leads to a small 
redistribution of charge. The correlation hole 
contains NO charge:    

 



Kohn-Sham equations 
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New (better ?) functionals are still an active field of research 



ESSENCE OF DENSITY-FUNTIONAL THEORY 

• Every observable quantity of a quantum system can 

be calculated from the density of the system ALONE  

(Hohenberg, Kohn, 1964). 

 

• The density of particles interacting with each other 

can be calculated as the density of an auxiliary 

system of non-interacting particles (Kohn, Sham, 

1965). 

Walter Kohn’s 80 

Ecole Normale Supérieur 



Walter Kohn 

• 1923 born in Vienna 

• 1938 had to leave Vienna  

• 1946 Univ. Toronto (master, Math) 

• 1948 Harvard (PhD, Schwinger)  

• Carnegie Mellon, Pittsburgh 
(Luttinger), Bell Labs, Copenhagen, 
Washigton (Seattle), Paris, Imperial 
College (London), ETH Zürich,      
Unv. California, San Diego  

• 1979 Founding director Santa 
Barbara, California 

• 1964 Hohenberg Kohn 

• 1965 Kohn Sham   

• 1998 Nobel prize:  Chemistry 

• 2016, he died on April 19 

With 80 years 



Walter Kohn, Nobel Prize 1998 Chemistry    

“Self-consistent Equations including Exchange and Correlation Effects” 
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 

Literal quote from Kohn and Sham’s paper:“… We do not expect 
an accurate description of chemical binding.” 

50 years ago  



DFT ground state of iron 

 LSDA  
 NM  

 fcc  

 in contrast to 

 experiment 

 

 GGA 
 FM  

 bcc  

 Correct lattice 
constant 

 

 Experiment 
 FM 

 bcc 

 

GGA 
GGA 

LSDA 

LSDA 



DFT thanks to Claudia Ambrosch (previously in Graz) 

GGA follows LDA 



Kopmanns‘ and Janak‘s theorem 

Slater‘s transion state:  
Cl atom  

K.Schwarz  
Chem. Physics 7, 100 (1975) 

Cl 

Cl+ 

Single-electron picture 
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CoO AFM-II total energy, DOS 

 CoO  

 in NaCl structure 

 antiferromagnetic: AF II  

 insulator 

 t2g splits  into a1g and eg‘ 

 GGA almost spilts the bands 

GGA LSDA 



   

   

CoO why is GGA better than LSDA 

 Central Co atom distinguishes 

 

 between  

 

 and 

 

 Angular correlation 

LSDA
xc

GGA
xcxc VVV   Co

Co

Co

Co
Co

O 

Co 



FeF2: GGA works surprisingly well 

FeF2: GGA splits 
t2g into a1g and eg’ 

Fe-EFG in FeF2: 

LSDA:    6.2 

GGA:    16.8 

exp:     16.5 

LSDA 

GGA 

agree 



Accuracy of DFT for transition metals 

 3d elements:  

 PBE superior, LDA 
much too small 

 

 4d elements: 

LDA too small, PBE too large 

 New functional  

Wu-Cohen (WC) 

 

 
   

 5d elements: 

 LDA superior, PBE 
too large 

Exp. LDA PBE WC 

Co 2.51 2.42 2.49 2.45 

Ni 3.52 3.42 3.52 3.47 

Cu 3.61 3.52 3.63 3.57 

Ru 2.71 2.69 2.71 2.73 

Rh 3.80 3.76 3.83 3.80 

Pd 3.88 3.85 3.95 3.89 

Ag 4.07 4.01 4.15 4.07 

Ir 3.84 3.84 3.90 3.86 

Pt 3.92 3.92 4.00 3.96 

Au 4.08 4.07 4.18 4.11 

Lattice parameters (Å) 

Z.Wu, R.E.Cohen,  
PRB 73, 235116 (2006) 



accuracy: “DFT limit” 

 Testing of DFT functionals: 

 error of theoretical lattice 
parameters for a large 
variety of solids (Li-Th) 

 

 

 

 

 

me 
(Å) 

mae 
(Å) 

mre 
(%) 

mare 
(%) 

LDA -0.058 0.058 -1.32 1.32 

SO-GGA -0.014 0.029 -0.37 0.68 

PBEsol -0.005 0.029 -0.17 0.67 

WC  0.000 0.031 -0.03 0.68 

AM05  0.005 0.035  0.01 0.77 

PBE  0.051 0.055  1.05 1.18 

LDA 

PBE 

PBEsol 

AM05 

WC 



Can LDA be improved ? 

 

 better GGAs and meta-GGAs (r, r, t):  
 usually improvement, but often too small.  

 LDA+U: for correlated 3d/4f electrons, treat strong Coulomb 
repulsion via Hubbard U parameter (cheap, “empirical U” ?) 

 Exact exchange: imbalance between exact X and approximate C 

 hybrid-DFT (mixing of HF + GGA; “mixing factor” ?) 

 exact exchange + RPA correlation (extremely expensive) 

GW: gaps in semiconductors,  expensive!  

Quantum Monte-Carlo: very expensive 

DMFT: for strongly correlated (metallic) d (f) -systems (expensive) 



Treatment of exchange and correlation 



Hybrid functional: only for (correlated) electrons  

 Only for certain atoms 

 and electrons of a given      
angular momentum ℓ 

The Slater integrals Fk are calculated according to  
P.Novák et al., phys.stat.sol (b) 245, 563 (2006) 



Structure: a,b,c,a,b,g, Ra , ...  

Ei+1-Ei <  

Etot, force 

Minimize E, force0 

properties 

yes 

V(r) = VC+Vxc Poisson, DFT 

DFT Kohn-Sham 

Structure optimization 

iteration i 

no 

S

C

F 

k  IBZ (irred.Brillouin zone) 
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unit cell atomic positions 
k-mesh in reciprocal space 



Solving Schrödingers equation: 

 cannot be found analytically 

 complete “numerical” solution is possible but inefficient 

 Ansatz:  
 linear combination of some “basis functions”   

 different methods use different basis sets ! 

 finding the “best” wave function using the variational principle: 

 

 

 

 this leads to the famous “Secular equations”, i.e. a set of linear 
equations which in matrix representation is called “generalized 
eigenvalue problem”        

     H C = E S C 
 

H, S : hamilton and overlap matrix; C: eigenvectors, E: eigenvalues 
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Basis Sets for Solids 

 plane waves  
 pseudo potentials 

 PAW (projector augmented wave) by P.E.Blöchl  

 space partitioning (augmentation) methods 
 LMTO (linear muffin tin orbitals)  

 ASA approx., linearized numerical radial function  

+ Hankel- and Bessel function expansions 

 full-potential LMTO 

 ASW (augmented spherical wave) 
 similar to LMTO 

 KKR (Korringa, Kohn, Rostocker method) 
 solution of multiple scattering problem, Greens function formalism 

 equivalent to APW 

 (L)APW (linearized augmented plane waves)  

 LCAO methods 
 Gaussians, Slater, or numerical orbitals, often with PP option) 



pseudopotential plane wave methods 

 plane waves form a “complete” basis 
set, however, they “never” converge 
due to the rapid oscillations of the 
atomic wave functions  close to the 
nuclei 

 let´s get rid of all core electrons and 
these oscillations by replacing the 
strong ion–electron potential by a 
much weaker (and physically dubious) 
pseudopotential 

 Hellmann´s 1935 combined  
   approximation method  



 

r 

Veff 

Pseudo- 

Pseudo-r 

Pseudo-potential 

x 

x 

x 

r 

“real” potentials vs. pseudopotentials 

• “real” potentials contain the Coulomb singularity -Z/r 
• the wave function has a cusp and many wiggles,  
• chemical bonding depends mainly on the overlap of the  
   wave functions between neighboring atoms (in the region  
   between the nuclei)  

exact form of V only needed beyond rcore rcore 

exact  

exact V 

exact r 



APW based schemes 

 APW (J.C.Slater 1937) 

 Non-linear eigenvalue problem 

 Computationally very demanding 

 LAPW (O.K.Anderssen 1975) 

 Generalized eigenvalue problem 

 Full-potential  

 Local orbitals (D.J.Singh 1991) 

 treatment of semi-core states (avoids ghostbands) 

 APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000) 

 Efficiency of APW + convenience of LAPW 

 Basis for 

K.Schwarz, P.Blaha, G.K.H.Madsen, 
Comp.Phys.Commun.147, 71-76 (2002) 

K.Schwarz,  
DFT calculations of solids with LAPW and WIEN2k 

Solid State Chem.176, 319-328 (2003) 

K.Schwarz, P.Blaha, S.B.Trickey, 
Molecular physics, 108, 3147 (2010) 



PW: 

APW Augmented Plane Wave method 

The unit cell is partitioned into: 

atomic spheres 

Interstitial region  
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Atomic partial waves 
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join 

Rmt 

unit cell 

Basis set: 

ul(r,) are the numerical solutions  
of the radial Schrödinger equation 
in a given spherical potential  
for a particular energy  

Alm
K coefficients for matching the PW 

Ir 

Plane Waves  
(PWs) 

      PWs atomic 



Slater‘s APW  (1937) 

Atomic partial waves 

 

 

Energy dependent basis functions 

lead to a 

Non-linear eigenvalue problem 
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Numerical search for those energies, for which  
the det|H-ES| vanishes. Computationally very demanding. 
          “Exact” solution for given MT potential! 

H Hamiltonian 
S overlap matrix 



Linearization of energy dependence 

LAPW suggested by  
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Atomic sphere 

PW 

O.K.Andersen, 
Phys.Rev. B 12, 3060  
(1975) 

expand ul at fixed energy El and 

add 
 

Alm
k, Blm

k: join PWs in  
value and slope 
 

 General eigenvalue problem          

(diagonalization) 
 

 additional constraint requires 

more PWs than APW  

LAPW 

 /ll uu

APW 

bonding 

antibonding 

center 



shape approximations to “real” potentials 

 Atomic sphere approximation (ASA) 

 overlapping spheres “fill” all volume 

 potential spherically symmetric  

 

 

 “muffin-tin” approximation (MTA) 

 non-overlapping spheres with spherically 

   symmetric potential  + 

 interstitial region with V=const. 

 

 

 “full”-potential 

 no shape approximations to V 



Full-potential in LAPW (A.Freeman et al)  

 The potential (and charge density) 
can be of general form  

 (no shape approximation) 

 

 

SrTiO3 

Full 
potential 

Muffin tin 
approximation 

 Inside each atomic sphere a 
local coordinate system is used 
(defining LM) 

 


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Core, semi-core and valence states 

 Valences states  

 High in energy 

 Delocalized wavefunctions  

 Semi-core states 

 Medium energy 

 Principal QN one less than valence 
(e.g. in Ti 3p and 4p) 

 not completely confined inside 
sphere  (charge leakage) 

 Core states 

 Low in energy 

 Reside inside sphere 

For example: Ti 

-356.6 

-31.7 Ry 
-38.3 1 Ry =13.605 eV 



Local orbitals (LO) 

 LOs   

 are confined to an atomic sphere 

 have zero value and slope at R 

 Can treat two principal QN n  

 for each azimuthal QN   

 ( e.g. 3p and 4p)  

 Corresponding states are strictly 
orthogonal 

 (e.g.semi-core and valence) 

 Tail of semi-core states can be 
represented by plane waves 

 Only slightly increases the basis set 

 (matrix size) 

 

D.J.Singh, 
Phys.Rev. B 43 6388 (1991) 

Ti atomic sphere 
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An alternative combination of schemes 
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E.Sjöstedt, L.Nordström, D.J.Singh, 
An alternative way of linearizing the augmented plane wave method, 

Solid State Commun. 114, 15 (2000) 

• Use APW, but at fixed El  (superior PW convergence) 
• Linearize with additional local orbitals (lo)  
  (add a few extra basis functions) 
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optimal solution: mixed basis 
• use APW+lo for states, which are difficult to converge:  
   (f or d- states, atoms with small spheres) 
• use LAPW+LO for all other atoms and angular momenta 



Improved convergence of APW+lo 

e.g. force (Fy) on oxygen in SES  

vs. # plane waves: 

 in LAPW changes sign  

 and converges slowly 

 in APW+lo better 
convergence    

 to same value as in LAPW  

SES (sodium electro solodalite) 

K.Schwarz, P.Blaha, G.K.H.Madsen, 
Comp.Phys.Commun.147, 71-76 (2002) 

Representative Convergence:  

SES 



Summary: Linearization LAPW vs. APW 

 Atomic partial waves 
 LAPW 

 

 
 APW+lo 

 

 

 Plane Waves (PWs) 

 

 

 

 match at sphere boundary 
 LAPW 

       value and slope 

 APW 
         value 

)ˆ()],()(),()([ rYrEukBrEukA mn

m

mnmnk 


  

rnKki
e


).( 

)ˆ(),()( rYrEukA m

m

nmnk 




)( nm kA

)(),( nmnm kBkA 

Atomic sphere 

PW 

plus another type of local orbital (lo) 

LAPW 

APW 

Fe 



Method implemented in WIEN2k 

E.Sjöststedt, L.Nordström, D.J.Singh, SSC 114, 15 (2000) 

• Use APW, but at fixed El  (superior PW convergence) 
• Linearize with additional lo (add a few basis functions) 
 
optimal solution: mixed basis 
• use APW+lo for states which are difficult to converge:   
  (f- or d- states, atoms with small spheres) 
• use LAPW+LO for all other atoms and angular momenta 
 

K.Schwarz, P.Blaha, G.K.H.Madsen, 
Comp.Phys.Commun.147, 71-76 (2002) 

A summary is given in  
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International users 

 about 2600 licenses worldwide  

100 industries (Canon, Eastman, Exxon, 

Fuji, Hitachi, IBM, Idemitsu Petrochem., 

Kansai, Komatsu, Konica-Minolta, A.D.Little, 

Mitsubishi, Mitsui Mining, Motorola, NEC, 

Nippon Steel, Norsk Hydro, Osram, 

Panasonic, Samsung, Seiko Epson, 

Siemens, Sony, Sumitomo,TDK,Toyota). 

Europe: A, B, CH, CZ, D, DK, ES, F, 

FIN, GR, H, I, IL, IRE, N, NL, PL, RO,  

S, SK, SL, SI, UK (ETH Zürich, MPI 

Stuttgart, FHI Berlin, DESY, RWTH 

Aachen, ESRF, Prague, IJS Ljubjlana, 

Paris, Chalmers, Cambridge, Oxford)  

  

America: ARG, BZ, CDN, MX, USA 

(MIT, NIST, Berkeley, Princeton, 

Harvard, Argonne NL, Los Alamos 

NL, Oak Ridge NL, Penn State, 

Purdue, Georgia Tech, Lehigh, John 

Hopkins, Chicago, Stony Brook, 

SUNY, UC St.Barbara, UCLA) 

  

far east: AUS, China, India, JPN, 

Korea, Pakistan, Singapore,Taiwan 

(Beijing, Tokyo, Osaka, Kyoto, 

Sendai, Tsukuba, Hong Kong)  

mailinglist: 10.000 emails/6 years 



The first publication of the WIEN code 



Europa  Austria  Vienna    WIEN 

In the Heart of EUROPE 

Austria 
Vienna 



In Japan 

 Book published by  

 Shinya Wakoh (2006) 



Development of WIEN2k 

 Authors of WIEN2k 

 P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz 

 Other contributions to WIEN2k 
 C. Ambrosch-Draxl (Free Univ. Berlin) optics 

 E. Assmann (Vienna) Wannier functions 

 F. Karsai (Vienna)  parallelization 

 R. Laskowski (Singapore), non-collinear magnetism, NMR chemical shifts, BSE  

 L. Marks (Northwestern, US) , various optimizations, new mixer 

 P. Novák and J. Kunes (Prague), LDA+U, SO  

 B. Olejnik (Vienna), non-linear optics,  

 C. Persson (Uppsala), irreducible representations  

 V. Petricek (Prague) 230 space groups  

 O. Rubel (McMaster Univ. Hamiton, ON) Berry phases 

 M. Scheffler (Fritz Haber Inst., Berlin), forces  

 D.J.Singh (NRL, Washington D.C., Oak Ridge), local oribtals (LO), APW+lo  

 E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo  

 J. Sofo (Penn State, USA) and J. Fuhr (Barriloche), Bader analysis  

 F. Tran (Vienna) Hartree Fock, DFT functionals 

 B. Yanchitsky and A. Timoshevskii (Kiev), space group  

 and many others …. 

 



2650 users 

 1st Vienna    April  1995 Wien95 
 2nd Vienna    April  1996 
 3rd Vienna    April  1997 Wien97 
 4st Trieste, Italy   June 1998 
 5st Vienna    April  1999  
 6th  Vienna    April  2000 

 7th  Vienna     Sept.  2001  Wien2k 
 8th  Esfahan, Iran   April  2002 
  Penn State, USA   July  2002 
 9th  Vienna    April  2003 
 10th Penn State, USA  July  2004 
 11th Kyoto, Japan  May  2005 
  IPAM, Los Angeles, USA Nov. 2005  
 12th Vienna   April 2006  
 13th Penn State, USA   June  2007 
 14th Singapore   July 2007 
 15th Vienna   March 2008 
 16th Penn State, USA   June  2009 
 17th  Nantes, France   July 2010  
 18th Penn State, USA   June  2011 
 19th  Tokyo, Japan  Sept  2012 
 20th Penn State, USA   Aug.  2013 
 21th  Nantes, France   July 2014 
   Warsaw, Poland   Oct.  2014 
 22nd  Singapore   Aug.  2015 
 23rd  McMaster, Canada   June  2016 

 

A series of WIEN workshops were held 



(L)APW methods 
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 spin polarization 

 shift of d-bands  
 Lower Hubbard band  

(spin up) 

 Upper Hubbard band  

(spin down) 
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APW + local orbital method  
(linearized) augmented plane wave method   

Total wave function  n…50-100 PWs /atom 

Variational method: 

Generalized eigenvalue problem:      H C=E S C 
Diagonalization of (real or complex) matrices of  
size 10.000 to 50.000 (up to 50 Gb memory) 

upper bound minimum 



Structure: a,b,c,a,b,g, Ra , ...  

Ei+1-Ei <  

Etot, force 

Minimize E, force0 

properties 

yes 

V(r) = VC+Vxc Poisson, DFT 

DFT Kohn-Sham 

Structure optimization 

iteration i 

no 

S

C

F 

k  IBZ (irred.Brillouin zone) 
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unit cell atomic positions 
k-mesh in reciprocal space 



The Brillouin zone (BZ) 

 Irreducible BZ (IBZ) 

 The irreducible wedge  

 Region, from which the 
whole BZ can be obtained 
by applying all symmetry 
operations 

 

 Bilbao Crystallographic 
Server: 

 www.cryst.ehu.es/cryst/ 

 The IBZ of all space groups 
can be obtained from this 
server 

 using the option KVEC and 
specifying the space group 
(e.g. No.225 for the fcc 
structure leading to bcc in 
reciprocal space, No.229 ) 

http://www.cryst.ehu.es/cryst/


Self-consistent field (SCF) calculations 

 In order to solve H=E we need to know the potential V(r) 

 for V(r) we need the electron density r(r)  

 the density r(r) can be obtained from (r)*(r) 

  ?? (r) is unknown before H=E is solved ?? 

 

SCF cycles 

Start with rin(r) 

Calculate Veff (r) =f[r(r)] 
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SCF cycles 

Start with rin(r) 

Calculate Veff (r) =f[r(r)] 
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Effects of SCF 

    Band structure of fcc Cu 

 



Program structure of WIEN2k 

 init_lapw 
 initialization 

 symmetry detection (F, I, C-
centering, inversion) 

 input generation with 
recommended defaults 

 quality (and computing time) 
depends on k-mesh and R.Kmax 
(determines #PW) 

 run_lapw 
 scf-cycle 

 optional with SO and/or LDA+U 

 different convergence criteria 
(energy, charge, forces) 

 save_lapw tic_gga_100k_rk7_vol0 
 cp case.struct and clmsum files,  

 mv case.scf file 

 rm case.broyd* files 

 



Flow Chart of WIEN2k (SCF) 

converged? 

Input rn-1(r) 

lapw0: calculates V(r)  

lapw1: sets up H and S and solves  

the generalized eigenvalue problem  

lapw2: computes the  

valence charge density 

no 
yes 

done! 

lcore 

mixer  

WIEN2k: P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz 



Workflow of a WIEN2k calculation 

• individual FORTRAN programs linked by shell-scripts 

• the output of one program is input for the next 

• lapw1/2 can run in parallel on many processors 

LAPW0 

LAPW1 

LAPW2 

LCORE 

LAPW0 

LCORE 

MIXER 

SUMPARA 

LAPW1 

LAPW2 

SCF cycle 

single mode parallel mode 

I
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n

 

I
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o
n

 

75 % 

20 % 

3 %* 

1% 

1% 

self 

consistent? 
 

END 
yes no 

MIXER 

self 

consistent? 
 

END 
yes no 

k-point parallelization 

* fraction of total computation time 



Advantage/disadvantage of WIEN2k 

+ robust all-electron full-potential method (new effective mixer) 

+ unbiased basisset, one convergence parameter (LDA-limit) 

+ all elements of periodic table (comparable in CPU time), metals 

+ LDA, GGA, meta-GGA, LDA+U, spin-orbit 

+ many properties and tools (supercells, symmetry) 

+ w2web (for novice users) 

?  speed + memory requirements 

+ very efficient basis for large spheres (2 bohr) (Fe: 12Ry, O: 9Ry) 

- less efficient for small spheres (1 bohr) (O: 25 Ry) 

- large cells, many atoms (n3, but new iterative diagonalization) 

- full H, S matrix stored  large memory required 

+ effective dual parallelization (k-points, mpi-fine-grain) 

+ many k-points do not require more memory 

- no stress tensor 

- no linear response 



w2web GUI (graphical user interface) 

 Structure generator 
 spacegroup selection 

 import cif file 

 step by step initialization 
 symmetry detection 

 automatic input generation 

 SCF calculations 
 Magnetism (spin-polarization) 

 Spin-orbit coupling 

 Forces (automatic geometry 
optimization) 

 Guided Tasks 
 Energy band structure 

 DOS 

 Electron density 

 X-ray spectra 

 Optics 

 



Structure given by: 
  spacegroup 
  lattice parameter 
  positions of atoms 
  (basis) 
 
Rutile TiO2: 
P42/mnm (136) 
a=8.68, c=5.59 bohr 

Ti: (0,0,0) 
 
O: (0.304,0.304,0) 
Wyckoff position:  x, x, 0  
 

Spacegroup P42/mnm 

2a 

  
   4f 

Ti 
O 



Quantum mechanics at work 

thanks to Erich Wimmer 



TiC electron density 

 NaCl structure  (100) plane 

 Valence electrons only 

 plot in 2 dimensions 

 Shows  

 charge distribution 

 covalent bonding 

 between the Ti-3d and C-2p 
electrons 

 eg/t2g  symmetry 

C 

Ti 



TiC, three valence states at Δ 

Energy bands 

C-2p 

C-2s 

Ti-3d 

Ti-4s 

Cp-Tid σ Tid-Tid σ 
Cp-Tid  

P.Blaha, K.Schwarz, 
Int.J.Quantum Chem. 23, 1535 (1983) 

(100) plane 



TiC, energy bands 

P.Blaha, K.Schwarz, 
Int.J.Quantum Chem. 23, 1535 (1983) 

spaghetti irred.rep. character bands  

unit cell   interstitial   atom t       ℓ=s, p, d, … 
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TiC, bonding and antibonding states 

P.Blaha, K.Schwarz, 
Int.J.Quantum Chem. 23, 1535 (1983) 

C-2p 

O-2p 

Ti-3d 

bonding 

antibonding 

weight: C Ti 
O Ti 

C-2s 

O-2s 



Bonding and antibondig state at Δ1 

 

 

antibonding 

Cp-Tid σ 

  

 

 

bonding 

Cp-Tid σ 

 



TiC, TiN, TiO 

P.Blaha, K.Schwarz, 
Int.J.Quantum Chem. 23, 1535 (1983) 

Rigid band model:  limitations 

TiC                 TiN              TiO 

Electron density r:  decomposition      

unit cell   interstitial   atom t       ℓ=s, p, d, … 
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TiC, TiN, TiO 
Atomic form factors for Ti and C 

Paired reflections 

Experimental difference electron density 





from 45 institutions  



The most  accurate code 

AE:  all electron 



Precision of DFT calculations illustrated for Si 
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r 

Veff 

Pseudo- 

Pseudo-r 

Pseudo-potential 

x 
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r 

“real” potentials vs. pseudopotentials 

• “real” potentials contain the Coulomb singularity -Z/r 
• the wave function has a cusp and many wiggles,  
• chemical bonding depends mainly on the overlap of the  
   wave functions between neighboring atoms (in the region  
   between the nuclei)  

exact form of V only needed beyond rcore rcore 

exact  

exact V 

exact r 



Crucial aspects for a simulation  

These aspects need to be considered when comparing theory with experiment.  

stoichiometry        electron core-hole           vacuum             average  
disorder      satellites    supercell vibrations  
impurities, defects    all electron    ℓ quantum n. 
      relativistic effects  

Theory vs. experiment: Agreement or disagreement:  
What can cause it? 



Vienna, city of music  
and the Wien2k code  



Walter Kohn 

Walter Kohn’s 80 

Ecole Normale Supérieur 

 1997  DFT Conferene in Vienna 

 Walter Kohn Main speaker   

 

 1998  Nobel Prize  

  for Chemmistry 
   

 2001  invited lecturer 
 My 60th birthday 
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