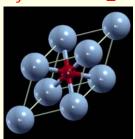
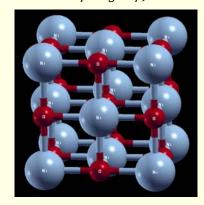


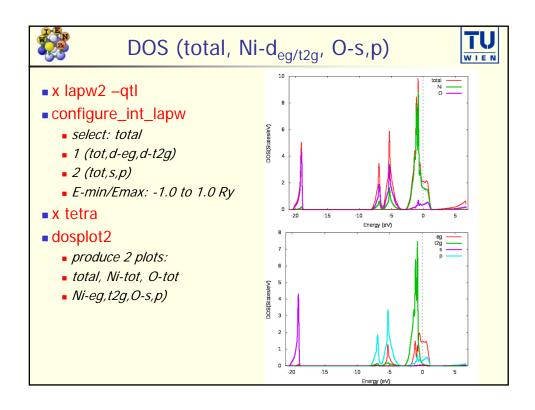
exercises: NiO an AFM insulator

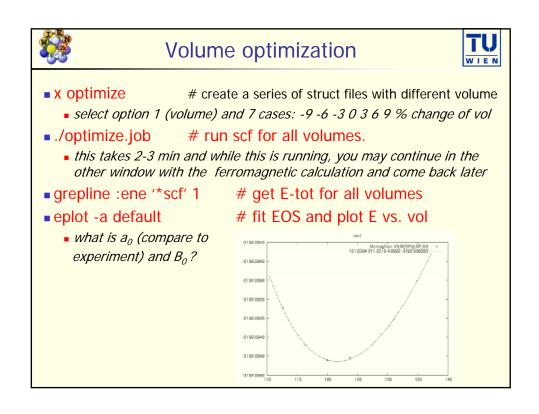

- open the userquide in a browser: http://wien2k.at/reg_user/textbooks
- open 2 windows and connect to the vsc3 frontend
 - ssh -X <u>training@vsc3.vsc.ac.at</u> (Vicom_2017)
- salloc -J pc## (## is your PC number: 01-29)
- srun hostname (find the allocated compute node)
 - ssh -X nAA-BBB (see previous line on your screen, on all windows)
- on ALL windows: cd ##/wien2k (see label on your screen)
 - since we all use the same account , it is ESSENTIAL that you create data only in YOUR "home-directory"!!
- the "text-version" of the instructions (for "cut and paste") can be opened using
 - \$EDITOR ~/blaha/wien2k_exercises.txt & (or use less/ vi / emacs)



NiO: nonmagnetic calculation

- mkdir NiO-nm; cd NiO-nm
- makestruct_lapw # define the NaCl structure of NiO
 - lattice: F (one does not need to know the spacegroup)
 - lattice parameter: 4.186 Ang
 - Ni (0,0,0)
 - O (0.5,0,0)
- cp init.struct NiO-nm.struct
- xcrysden --wien_struct .

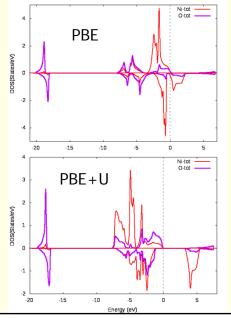

primitive and conventional cell



NiO-nm: initialization and scf

- init_lapw –h # help switch to see all options
- init_lapw -b -numk 300 # batch initialization with 6x6x6 kmesh
 - # what are the valence and core states ?
- run_lapw # scf cycle with default convergence
- save_lapw pbe
 # save a calculation
- # check scf convergence:
- grep :ENE pbe.scf # observe convergence and warnings
- grep :WAR pbe.scf # linearization warning for state above EF
- grep :FER pbe.scf
- grep :GAP pbe.scf # metal !!
- grep :DIS pbe.scf # charge convergence
- grep: CTO001 pbe.scf # charge in Ni sphere (~constant, Ni²⁺, 3d⁸)
- grep :CTO002 pbe.scf # O charge (increases, O^{2-} , Ni-4s² \rightarrow O-2p⁶)

NiO: ferromagnetic calculation



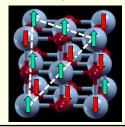
WIEN

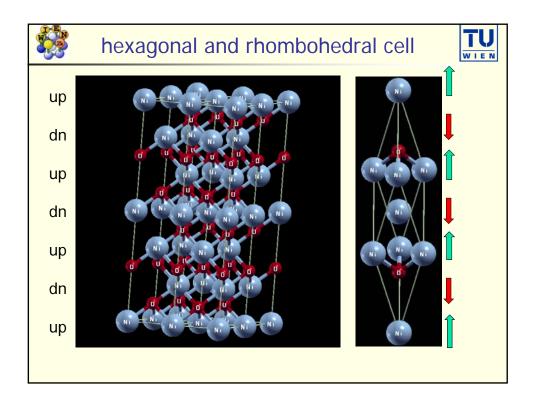
- cd ..; mkdir NiO-fm; cd NiO-fm
- cp ../NiO-nm/NiO-nm.struct NiO-fm.struct #copy nm struct file
- init_lapw -b -sp -numk 300 # spin-polarized initialization
- runsp_lapw # spin-polarized scf cycle
- save_lapw pbe
- # check convergence and compare with NiO-nm
- grep :ENE *.scf # fm or nm lower in energy ?
- grep :GAP *scf # still metallic, (exp. gap ~4eV)
- grep :MMT *scf # total spin magnetic moment / cell
- grep :MMI001 *scf # exp. moment: ~2uB

DOS (total, Ni-d_{eg/t2g}, O-s,p) x lapw2 -qtl -up x lapw2 -qtl -dn

- configure_int_lapw
 - select: total
 - 1 (tot,d-eg,d-t2g)
 - 2 (tot,s,p)
 - E-range = -1.0 / 1.0
- x tetra -up / -dn
- dosplot2 -up
 - produce a spin-pol. plot:
 - Ni-tot, O-tot up+dn

NiO: fm PBE+U calculation

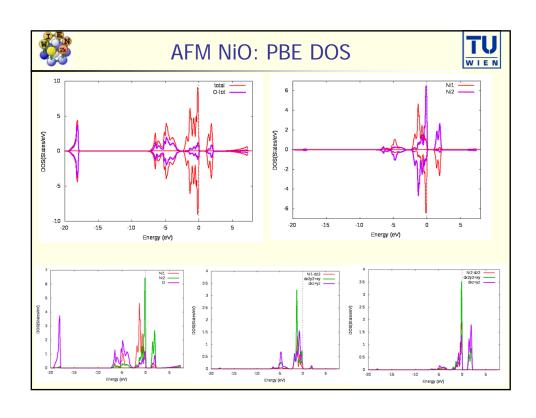

- x orb -up
- **x lapwdm -up** # create input templates
- \$EDITOR NiO-fm.indm # density matrix for only 1atom (Ni, I=2; delete 2nd atom)
- **\$EDITOR NiO-fm.inorb** # only 1 atom (Ni), SIC-method, U= 7eV)
- runsp_lapw -orb # spin-polarized scf cycle with GGA+U
- save_lapw pbe+u
- # compare with fm calculation
- grepline :GAP '*.scf' 2 # shows last 2 :GAP lines of all scf files
- grepline: MMI001 '*scf' 1 # observe creation of gap and larger moment
- plot DOS in the same way as for PBE calculation



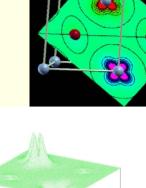
NiO: AFM-II (fm Ni(111) layers)

- cd ..; mkdir NiO-afm; cd NiO-afm
- cp ../NiO-nm/NiO-nm.struct fcc.struct #copy nm struct file as start
- create a supercell with 2 Ni and O atoms along (111)-direction
- octave # a "free" matlab
- helpstruct
 # list all structeditor commands
- help loadstruct
 # help for specific command
- s=loadstruct("fcc.struct");
- sp=makeprimitive(s); # create primitive (rhombohedral) cell
- su=makesupercell(sp,[1 1 0; 1 0 1; 0 1 1]);
- showstruct(su)
- savestruct(su, "NiO-afm.struct")
- quit

AFM-II NiO

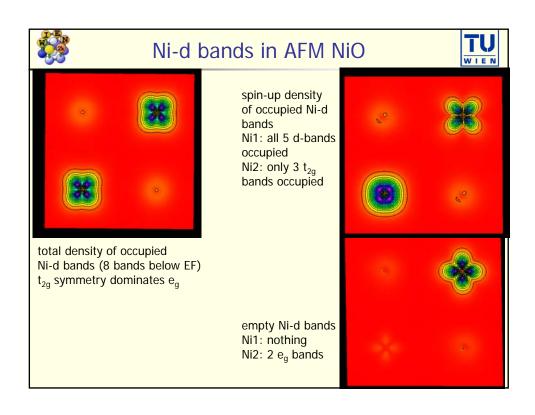

- less NiO-afm.struct # observe the 4 atoms in R cell
- **X SGROUP** # run spacegroup program
- less NiO-afm.struct_sgroup # back to original NaCl structure
- **\$EDITOR NiO-afm.struct** # "label Ni1 and Ni2" (overwrite mode). This directs sgroup to treat Ni1 and Ni2 as different atoms
- x sgroup
- less NiO-afm.struct_sgroup # 3 non-equivalent atoms !
- cp NiO-afm.struct_sgroup NiO-afm.struct # take this struct file
- instgen_lapw –ask # starting spin-structure: u, d, n
- init_lapw -b -sp -numk 100 # (4x4x4 k-mesh)
- runsp_lapw # spin-polarized scf cycle
- save_lapw pbe

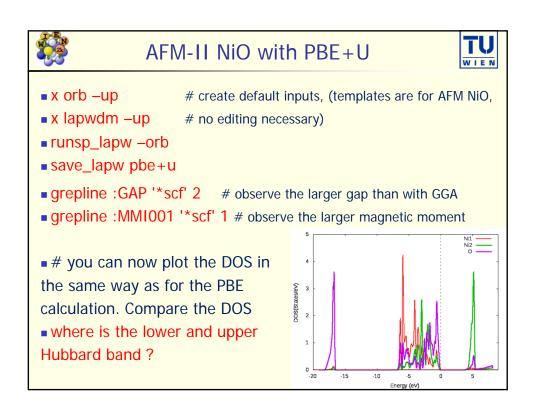
AFM NiO: convergence and DOS


- # check convergence and compare with NiO-nm, NiO-fm
- grep :ENE *.scf # afm, fm or nm lower in energy ?
- grep:GAP *scf # small gap opened, (exp. gap ~4eV)
- grep :MMT *scf # total spin magnetic moment / cell
- grep :MMI001 *scf # small moment (exp. ~2uB)
- # plot DOS (observe "symmetry" between up and dn-DOS)
- x lapw2 -qtl -up /-dn
- configure_int_lapw # select total and all "meaningful" splittings (they are automatically symmetry adapted), E-range
- x tetra -up / -dn
- dosplot2 -up # Ni1/2-up/dn; d-split (eg/t2g does not exist in this coordinate system); Ni1,Ni2,O-tot up

spin-density

- xcrysden --wien_density .
 - 2D plot
 - 80 points (in first line)
 - 3 atoms spanning rectangular "fcc"-100-plane (2Ni at different z-values)
 - enlarge plane by 0.5
 - submit and change "ADD" to "SUB"
 - plot with "rainbow", thermometer, ranges: -0.4/0.40, small atoms, ball/stick ratio=0
- rhoplot # 3D-plot

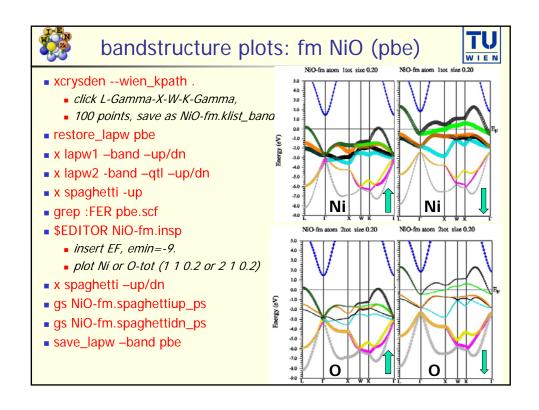


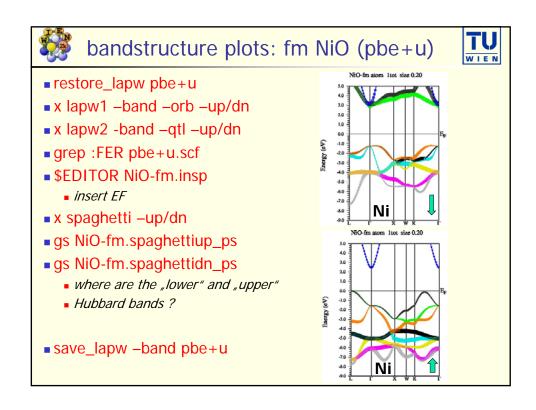


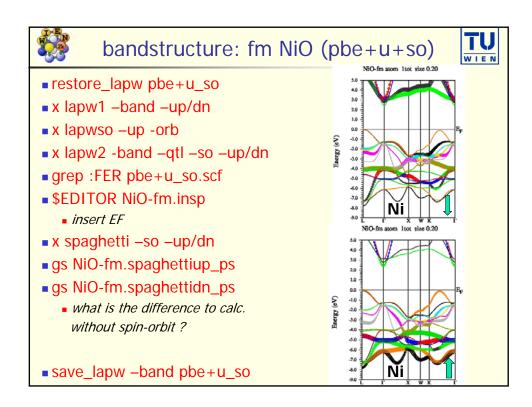
density of occupied and empty Ni-d states

- grep band NiO-afm.output2up # find the energy-ranges (xxx and yyy) around EF to plot occupied (8 bands) and empty (2 bands) Ni-d states
- x lapw2 -up -emin xxx # calculate ρ_{up} for states from xxx to EF
- x lapw2 -dn -emin xxx # calculate ρ_{dn} for states from xxx to EF
- \$EDITOR NiO-afm.in5 # change "SUB" to "ADD"
- x lapw5 -up # generate density in plane
- rhoplot / xcrysden --wien_renderdensity . # plot total density of occupied Nid band - which symmetry is present around Ni
- rm NiO-afm.clmvaldn # remove spin-dn density
- x lapw5 -up
- rhoplot / xcrysden --wien_renderdensity . # plot spin-up density of occupied Ni-d band - which symmetry is present around Ni
- x lapw2 -all xxx yyy -up # calculate spin-up density for unoccupied Ni-d band
- x lapw5 -up
- xcrysden --wien_renderdensity . # plot spin-up density of unoccupied Ni-d band symmetry around Ni ?

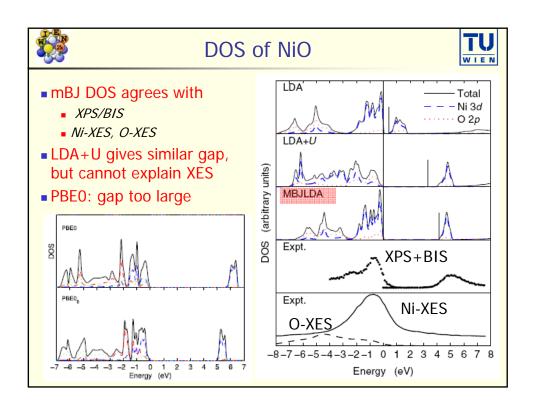
Compare the different calculations


- cd ...
- grepline :ENE '*/pbe.scf' 1 # which case has the lowest energy, what are the differences ?
- grepline :ENE '*/pbe+u.scf' 1 # which case has the lowest energy, what are the differences ? What are the differences between PBE and PBE+U ?
- # from an analysis of total energies for different spin structures (including other AFM settings) a Heisenberg model can be set up and the exchange parameters J_i could be determined.
- grepline :GAP '*/pbe.scf' 2 # which case has a gap in PBE ?
- grepline:GAP '*/pbe+u.scf' 2 # which case has a gap in PBE+U?




FM NiO with GGA+U and spin-orbit coupling

- cd NiO-fm
- initso_lapw # define magnetization direction along (001), use defaults; continue setup with "spin-polarization": symmetry will detect the symmetry break and create a new structure, commit all changes
- runsp_lapw -orb -so # scf cycle with PBE+U and spin-orbit
- save_lapw pbe+u_so
- grepline :GAP '*scf' 2 # compare the gaps
- grepline: MMI001 '*scf' 1 # compare the spin magnetic moments
- grepline :ORB001 '*scf' 1 # get the orbital magnetic moment (only in the so-calc.)
- get the DOS as above (use x lapw2 -up -so -qtl)



other DFT options

- Tran-Blaha modified Becke-Johnson potential
 - a meta-GGA potential giving gaps of GW quality. XES spectra ok.
 - fast, but no total energy! init_mbj_lapw (see UG)
- EECE (onsite hybrid-DFT for correlated electrons only).
 - fast, similar to GGA+U, good gaps with proper HF fraction (see UG)
- Hybrid-DFT (PBE0, HSE, ...)
 - rather time consuming, run in k-parallel (or mpi-) mode, good gaps with proper HF fraction. init_hf_lapw (see UG)

